Do All Elliptic Curves of the Same Order Have the Same Difficulty of Discrete Log?

نویسندگان

  • David Jao
  • Stephen D. Miller
  • Ramarathnam Venkatesan
چکیده

The aim of this paper is to justify the common cryptographic practice of selecting elliptic curves using their order as the primary criterion. We can formalize this issue by asking whether the discrete log problem (dlog) has the same difficulty for all curves over a given finite field with the same order. We prove that this is essentially true by showing polynomial time random reducibility of dlog among such curves, assuming the Generalized Riemann Hypothesis (GRH). We do so by constructing certain expander graphs, similar to Ramanujan graphs, with elliptic curves as nodes and low degree isogenies as edges. The result is obtained from the rapid mixing of random walks on this graph. Our proof works only for curves with (nearly) the same endomorphism rings. Without this technical restriction such a dlog equivalence might be false; however, in practice the restriction may be moot, because all known polynomial time techniques for constructing equal order curves produce only curves with nearly equal endomorphism rings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient blind signature scheme based on the elliptic curve discrete logarithm problem

Elliptic Curve Cryptosystems (ECC) have recently received significant attention by researchers due to their high performance such as low computational cost and small key size. In this paper a novel untraceable blind signature scheme is presented. Since the security of proposed method is based on difficulty of solving discrete logarithm over an elliptic curve, performance of the proposed scheme ...

متن کامل

Ramanujan Graphs and the Random Reducibility of Discrete Log on Isogenous Elliptic Curves

Cryptographic applications using an elliptic curve over a finite field filter curves for suitability using their order as the primary criterion: e.g. checking that their order has a large prime divisor before accepting it. It is therefore natural to ask whether the discrete log problem (dlog) has the same difficulty for all curves with the same order; if so it would justify the above practice. ...

متن کامل

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Generalized Jacobian and Discrete Logarithm Problem on Elliptic Curves

Let E be an elliptic curve over the finite field F_{q}, P a point in E(F_{q}) of order n, and Q a point in the group generated by P. The discrete logarithm problem on E is to find the number k such that Q = kP. In this paper we reduce the discrete logarithm problem on E[n] to the discrete logarithm on the group F*_{q} , the multiplicative group of nonzero elements of Fq, in the case where n | q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005